1,482 research outputs found

    Lower and Upper Conditioning in Quantum Bayesian Theory

    Get PDF
    Updating a probability distribution in the light of new evidence is a very basic operation in Bayesian probability theory. It is also known as state revision or simply as conditioning. This paper recalls how locally updating a joint state can equivalently be described via inference using the channel extracted from the state (via disintegration). This paper also investigates the quantum analogues of conditioning, and in particular the analogues of this equivalence between updating a joint state and inference. The main finding is that in order to obtain a similar equivalence, we have to distinguish two forms of quantum conditioning, which we call lower and upper conditioning. They are known from the literature, but the common framework in which we describe them and the equivalence result are new.Comment: In Proceedings QPL 2018, arXiv:1901.0947

    Categorical Aspects of Parameter Learning

    Full text link
    Parameter learning is the technique for obtaining the probabilistic parameters in conditional probability tables in Bayesian networks from tables with (observed) data --- where it is assumed that the underlying graphical structure is known. There are basically two ways of doing so, referred to as maximal likelihood estimation (MLE) and as Bayesian learning. This paper provides a categorical analysis of these two techniques and describes them in terms of basic properties of the multiset monad M, the distribution monad D and the Giry monad G. In essence, learning is about the reltionships between multisets (used for counting) on the one hand and probability distributions on the other. These relationsips will be described as suitable natural transformations

    A Recipe for State-and-Effect Triangles

    Full text link
    In the semantics of programming languages one can view programs as state transformers, or as predicate transformers. Recently the author has introduced state-and-effect triangles which capture this situation categorically, involving an adjunction between state- and predicate-transformers. The current paper exploits a classical result in category theory, part of Jon Beck's monadicity theorem, to systematically construct such a state-and-effect triangle from an adjunction. The power of this construction is illustrated in many examples, covering many monads occurring in program semantics, including (probabilistic) power domains

    Duality for Convexity

    Full text link
    This paper studies convex sets categorically, namely as algebras of a distribution monad. It is shown that convex sets occur in two dual adjunctions, namely one with preframes via the Boolean truth values {0,1} as dualising object, and one with effect algebras via the (real) unit interval [0,1] as dualising object. These effect algebras are of interest in the foundations of quantum mechanics

    Neural Nets via Forward State Transformation and Backward Loss Transformation

    Full text link
    This article studies (multilayer perceptron) neural networks with an emphasis on the transformations involved --- both forward and backward --- in order to develop a semantical/logical perspective that is in line with standard program semantics. The common two-pass neural network training algorithms make this viewpoint particularly fitting. In the forward direction, neural networks act as state transformers. In the reverse direction, however, neural networks change losses of outputs to losses of inputs, thereby acting like a (real-valued) predicate transformer. In this way, backpropagation is functorial by construction, as shown earlier in recent other work. We illustrate this perspective by training a simple instance of a neural network

    Relating Operator Spaces via Adjunctions

    Full text link
    This chapter uses categorical techniques to describe relations between various sets of operators on a Hilbert space, such as self-adjoint, positive, density, effect and projection operators. These relations, including various Hilbert-Schmidt isomorphisms of the form tr(A-), are expressed in terms of dual adjunctions, and maps between them. Of particular interest is the connection with quantum structures, via a dual adjunction between convex sets and effect modules. The approach systematically uses categories of modules, via their description as Eilenberg-Moore algebras of a monad
    • …
    corecore